Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 787
Filtrar
1.
Int J Biol Sci ; 20(7): 2640-2657, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725843

RESUMEN

Esophageal carcinoma is amongst the prevalent malignancies worldwide, characterized by unclear molecular classifications and varying clinical outcomes. The PI3K/AKT/mTOR signaling, one of the frequently perturbed dysregulated pathways in human malignancies, has instigated the development of various inhibitory agents targeting this pathway, but many ESCC patients exhibit intrinsic or adaptive resistance to these inhibitors. Here, we aim to explore the reasons for the insensitivity of ESCC patients to mTOR inhibitors. We assessed the sensitivity to rapamycin in various ESCC cell lines by determining their respective IC50 values and found that cells with a low level of HMGA1 were more tolerant to rapamycin. Subsequent experiments have supported this finding. Through a transcriptome sequencing, we identified a crucial downstream effector of HMGA1, FKBP12, and found that FKBP12 was necessary for HMGA1-induced cell sensitivity to rapamycin. HMGA1 interacted with ETS1, and facilitated the transcription of FKBP12. Finally, we validated this regulatory axis in in vivo experiments, where HMGA1 deficiency in transplanted tumors rendered them resistance to rapamycin. Therefore, we speculate that mTOR inhibitor therapy for individuals exhibiting a reduced level of HMGA1 or FKBP12 may not work. Conversely, individuals exhibiting an elevated level of HMGA1 or FKBP12 are more suitable candidates for mTOR inhibitor treatment.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Proteína HMGA1a , Inhibidores mTOR , Proteína Proto-Oncogénica c-ets-1 , Humanos , Línea Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Proteína Proto-Oncogénica c-ets-1/metabolismo , Proteína Proto-Oncogénica c-ets-1/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Inhibidores mTOR/farmacología , Inhibidores mTOR/uso terapéutico , Proteína 1A de Unión a Tacrolimus/metabolismo , Proteína 1A de Unión a Tacrolimus/genética , Animales , Sirolimus/farmacología , Sirolimus/uso terapéutico , Transducción de Señal/efectos de los fármacos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo , Ratones , Ratones Desnudos
2.
World J Stem Cells ; 16(4): 353-374, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38690515

RESUMEN

Coronavirus disease 2019 (COVID-19) is an acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection typically presents with fever and respiratory symptoms, which can progress to severe respiratory distress syndrome and multiple organ failure. In severe cases, these complications may even lead to death. One of the causes of COVID-19 deaths is the cytokine storm caused by an overactive immune response. Therefore, suppressing the overactive immune response may be an effective strategy for treating COVID-19. Mesenchymal stem cells (MSCs) and their derived exosomes (MSCs-Exo) have potent homing abilities, immunomodulatory functions, regenerative repair, and antifibrotic effects, promising an effective tool in treating COVID-19. In this paper, we review the main mechanisms and potential roles of MSCs and MSCs-Exo in treating COVID-19. We also summarize relevant recent clinical trials, including the source of cells, the dosage and the efficacy, and the clinical value and problems in this field, providing more theoretical references for the clinical use of MSCs and MSCs-Exo in the treatment of COVID-19.

3.
Transl Oncol ; 45: 101969, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38692196

RESUMEN

BACKGROUND: Exosomes, one of small extracellular vesicles, play a vital role in cell to cell communication and contribute to the advancement of tumors through their cargo molecules. Exosomal circRNAs have emerged as significant players in various types of tumors. Thus, this study aimed to investigate how exosomal circRNAs are involved in the diagnosis and progression of gastric cancer (GC). METHODS: Serum exosomes were characterized using transmission electron microscopy, nanoparticle tracking analysis and Western blot. CCK-8, colony formation and transwell assays were conducted to study the function of hsa_circ_0050547 (named as circ50547). qRT-PCR was used to quantify the expression of circ50547 in GC tissues and serum exosomes. Fluorescence in situ hybridization was applied to detect the cellular distribution of circ50547. Stemness and drug-resistance were detected by sphere formation, WB, flow cytometry and half-maximal inhibitory concentration analyses. Bioinformatic analyses, luciferase experiments, qRT-PCR and WB were used to investigate molecular mechanisms. RESULTS: We discovered for the first time a new type of GC-derived exosomal circRNA, circ50547. We found that circ50547 is highly expressed in both GC tissues and serum exosomes. Interestingly, we observed that the diagnostic value of exosomal circ50547 is superior to that of serum circ50547. Circ50547 overexpression enhanced the proliferation, migration, invasion, stemness and drug resistance of GC cells, while knockdown of circ50547 showed the opposite effect. Mechanistically, circ50547 acted as a sponge for miR-217 to regulate the expression of HNF1B, which promoted gastric cancer progression. CONCLUSION: Exosomal circ50547 may be a promising marker for the diagnosis and prognosis prediction of GC. These findings suggest that it plays an oncogenic role through miR-217/HNF1B signaling pathway in GC.

4.
J Nanobiotechnology ; 22(1): 215, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693585

RESUMEN

Stem cells (SCs) have been used therapeutically for decades, yet their applications are limited by factors such as the risk of immune rejection and potential tumorigenicity. Extracellular vesicles (EVs), a key paracrine component of stem cell potency, overcome the drawbacks of stem cell applications as a cell-free therapeutic agent and play an important role in treating various diseases. However, EVs derived from two-dimensional (2D) planar culture of SCs have low yield and face challenges in large-scale production, which hinders the clinical translation of EVs. Three-dimensional (3D) culture, given its ability to more realistically simulate the in vivo environment, can not only expand SCs in large quantities, but also improve the yield and activity of EVs, changing the content of EVs and improving their therapeutic effects. In this review, we briefly describe the advantages of EVs and EV-related clinical applications, provide an overview of 3D cell culture, and finally focus on specific applications and future perspectives of EVs derived from 3D culture of different SCs.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Vesículas Extracelulares , Células Madre , Vesículas Extracelulares/metabolismo , Humanos , Células Madre/citología , Células Madre/metabolismo , Animales , Técnicas de Cultivo Tridimensional de Células/métodos , Técnicas de Cultivo de Célula/métodos
5.
Physiol Plant ; 176(2): e14296, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650503

RESUMEN

In Dunaliella tertiolecta, a microalga renowned for its extraordinary tolerance to high salinity levels up to 4.5 M NaCl, the mechanisms underlying its stress response have largely remained a mystery. In a groundbreaking discovery, this study identifies a choline dehydrogenase enzyme, termed DtCHDH, capable of converting choline to betaine aldehyde. Remarkably, this is the first identification of such an enzyme not just in D. tertiolecta but across the entire Chlorophyta. A 3D model of DtCHDH was constructed, and molecular docking with choline was performed, revealing a potential binding site for the substrate. The enzyme was heterologously expressed in E. coli Rosetta (DE3) and subsequently purified, achieving enzyme activity of 672.2 U/mg. To elucidate the role of DtCHDH in the salt tolerance of D. tertiolecta, RNAi was employed to knock down DtCHDH gene expression. The results indicated that the Ri-12 strain exhibited compromised growth under both high and low salt conditions, along with consistent levels of DtCHDH gene expression and betaine content. Additionally, fatty acid analysis indicated that DtCHDH might also be a FAPs enzyme, catalyzing reactions with decarboxylase activity. This study not only illuminates the role of choline metabolism in D. tertiolecta's adaptation to high salinity but also identifies a novel target for enhancing the NaCl tolerance of microalgae in biotechnological applications.


Asunto(s)
Betaína , Colina-Deshidrogenasa , Tolerancia a la Sal , Betaína/metabolismo , Tolerancia a la Sal/genética , Colina-Deshidrogenasa/metabolismo , Colina-Deshidrogenasa/genética , Colina/metabolismo , Chlorophyceae/genética , Chlorophyceae/fisiología , Chlorophyceae/enzimología , Chlorophyceae/metabolismo , Microalgas/genética , Microalgas/enzimología , Microalgas/metabolismo , Simulación del Acoplamiento Molecular , Cloruro de Sodio/farmacología
6.
Signal Transduct Target Ther ; 9(1): 96, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38653754

RESUMEN

The translocation of YAP from the cytoplasm to the nucleus is critical for its activation and plays a key role in tumor progression. However, the precise molecular mechanisms governing the nuclear import of YAP are not fully understood. In this study, we have uncovered a crucial role of SOX9 in the activation of YAP. SOX9 promotes the nuclear translocation of YAP by direct interaction. Importantly, we have identified that the binding between Asp-125 of SOX9 and Arg-124 of YAP is essential for SOX9-YAP interaction and subsequent nuclear entry of YAP. Additionally, we have discovered a novel asymmetrical dimethylation of YAP at Arg-124 (YAP-R124me2a) catalyzed by PRMT1. YAP-R124me2a enhances the interaction between YAP and SOX9 and is associated with poor prognosis in multiple cancers. Furthermore, we disrupted the interaction between SOX9 and YAP using a competitive peptide, S-A1, which mimics an α-helix of SOX9 containing Asp-125. S-A1 significantly inhibits YAP nuclear translocation and effectively suppresses tumor growth. This study provides the first evidence of SOX9 as a pivotal regulator driving YAP nuclear translocation and presents a potential therapeutic strategy for YAP-driven human cancers by targeting SOX9-YAP interaction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Núcleo Celular , Factor de Transcripción SOX9 , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Proteínas Señalizadoras YAP/genética , Proteínas Señalizadoras YAP/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Transporte Activo de Núcleo Celular/genética , Ratones , Línea Celular Tumoral , Animales , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
7.
Org Lett ; 26(16): 3469-3474, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38619221

RESUMEN

Esters are bulk and fine chemicals and ubiquitous in polymers, bioactive compounds, and natural products. Their traditional synthetic approach is the esterification of carboxylic acids or their activated derivatives with alcohols. Herein, a bimetallic relay catalytic protocol was developed for the aerobic esterification of one alcohol in the presence of a slowly oxidizing alcohol, which has been identified as methanol. A concise synthesis of phlomic acid was executed to demonstrate the practicality and potential of this reaction.

8.
Chem Commun (Camb) ; 60(33): 4455-4458, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38563643

RESUMEN

Herein, a novel and facile organic photosensitizer (thioxanthone)-mediated energy-transfer-enabled (EnT-enabled) dearomative [2+2] cycloaddition of aromatic heterocycles/maleimides for green synthesis of cyclobutane-fused polycyclic skeletons is reported. Mechanistic investigations revealed that different EnT pathways by triplet thioxanthone were initiated when different aromatic heterocycles participated in the reaction, giving the corresponding excited intermediates, which underwent the subsequent intermolecular [2+2] cycloaddition to access the desired highly functionalized cyclobutane-fused polycyclic skeletons.

9.
World J Gastrointest Oncol ; 16(3): 1046-1058, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38577462

RESUMEN

BACKGROUND: Gastric cancer (GC) is the fifth most commonly diagnosed malignancy worldwide, with over 1 million new cases per year, and the third leading cause of cancer-related death. AIM: To determine the optimal perioperative treatment regimen for patients with locally resectable GC. METHODS: A comprehensive literature search was conducted, focusing on phase II/III randomized controlled trials (RCTs) assessing perioperative chemotherapy and chemoradiotherapy in treating locally resectable GC. The R0 resection rate, overall survival (OS), disease-free survival (DFS), and incidence of grade 3 or higher nonsurgical severe adverse events (SAEs) associated with various perioperative regimens were analyzed. A Bayesian network meta-analysis was performed to compare treatment regimens and rank their efficacy. RESULTS: Thirty RCTs involving 8346 patients were included in this study. Neoadjuvant XELOX plus neoadjuvant radiotherapy and neoadjuvant CF were found to significantly improve the R0 resection rate compared with surgery alone, and the former had the highest probability of being the most effective option in this context. Neoadjuvant plus adjuvant FLOT was associated with the highest probability of being the best regimen for improving OS. Owing to limited data, no definitive ranking could be determined for DFS. Considering nonsurgical SAEs, FLO has emerged as the safest treatment regimen. CONCLUSION: This study provides valuable insights for clinicians when selecting perioperative treatment regimens for patients with locally resectable GC. Further studies are required to validate these findings.

10.
World J Diabetes ; 15(3): 488-501, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38591087

RESUMEN

BACKGROUND: Diabetic kidney disease (DKD) is a major complication of diabetes mellitus. Renal tubular epithelial cell (TEC) damage, which is strongly associated with the inflammatory response and mesenchymal trans-differentiation, plays a significant role in DKD; However, the precise molecular mechanism is unknown. The recently identified microRNA-630 (miR-630) has been hypothesized to be closely associated with cell migration, apoptosis, and autophagy. However, the association between miR-630 and DKD and the underlying mechanism remain unknown. AIM: To investigate how miR-630 affects TEC injury and the inflammatory response in DKD rats. METHODS: Streptozotocin was administered to six-week-old male rats to create a hyperglycemic diabetic model. In the second week of modeling, the rats were divided into control, DKD, negative control of lentivirus, and miR-630 overexpression groups. After 8 wk, urine and blood samples were collected for the kidney injury assays, and renal tissues were removed for further molecular assays. The target gene for miR-630 was predicted using bioinformatics, and the association between miR-630 and toll-like receptor 4 (TLR4) was confirmed using in vitro investigations and double luciferase reporter gene assays. Overexpression of miR-630 in DKD rats led to changes in body weight, renal weight index, basic blood parameters and histopathological changes. RESULTS: The expression level of miR-630 was reduced in the kidney tissue of rats with DKD (P < 0.05). The miR-630 and TLR4 expressions in rat renal TECs (NRK-52E) were measured using quantitative reverse transcription polymerase chain reaction. The mRNA expression level of miR-630 was significantly lower in the high-glucose (HG) and HG + mimic negative control (NC) groups than in the normal glucose (NG) group (P < 0.05). In contrast, the mRNA expression level of TLR4 was significantly higher in these groups (P < 0.05). However, miR-630 mRNA expression increased and TLR4 mRNA expression significantly decreased in the HG + miR-630 mimic group than in the HG + mimic NC group (P < 0.05). Furthermore, the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), and IL-6 were significantly higher in the HG and HG + mimic NC groups than in NG group (P < 0.05). However, the levels of these cytokines were significantly lower in the HG + miR-630 mimic group than in the HG + mimic NC group (P < 0.05). Notably, changes in protein expression were observed. The HG and HG + mimic NC groups showed a significant decrease in E-cadherin protein expression, whereas TLR4, α-smooth muscle actin (SMA), and collagen IV protein expression increased (P < 0.05). Conversely, the HG + miR-630 mimic group exhibited a significant increase in E-cadherin protein expression and a notable decrease in TLR4, α-SMA, and collagen IV protein expression than in the HG + mimic NC group (P < 0.05). The miR-630 targets TLR4 gene expression. In vivo experiments demonstrated that DKD rats treated with miR-630 agomir exhibited significantly higher miR-630 mRNA expression than DKD rats injected with agomir NC. Additionally, rats treated with miR-630 agomir showed significant reductions in urinary albumin, blood glucose, TLR4, and proinflammatory markers (TNF-α, IL-1ß, and IL-6) expression levels (P < 0.05). Moreover, these rats exhibited fewer kidney lesions and reduced infiltration of inflammatory cells. CONCLUSION: MiR-630 may inhibit the inflammatory reaction of DKD by targeting TLR4, and has a protective effect on DKD.

11.
J Transl Med ; 22(1): 394, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685033

RESUMEN

The immune system in humans is a defense department against both exogenous and endogenous hazards, where CD8+ T cells play a crucial role in opposing pathological threats. Various immunotherapies based on CD8+ T cells have emerged in recent decades, showing their promising results in treating intractable diseases. However, in the fight against the constantly changing and evolving cancers, the formation and function of CD8+ T cells can be challenged by tumors that might train a group of accomplices to resist the T cell killing. As cancer therapy stepped into the era of immunotherapy, understanding the physiological role of CD8+ T cells, studying the machinery of tumor immune escape, and thereby formulating different therapeutic strategies become the imperative missions for clinical and translational researchers to fulfill. After brief basics of CD8+ T cell-based biology is covered, this review delineates the mechanisms of tumor immune escape and discusses different cancer immunotherapy regimens with their own advantages and setbacks, embracing challenges and perspectives in near future.


Asunto(s)
Linfocitos T CD8-positivos , Inmunoterapia , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Inmunoterapia/métodos , Linfocitos T CD8-positivos/inmunología , Animales , Escape del Tumor/inmunología
12.
Cells ; 13(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38474329

RESUMEN

Wnt signaling is a highly conserved metazoan pathway that plays a crucial role in cell fate determination and morphogenesis during development. Wnt ligands can induce disparate cellular responses. The exact mechanism behind these different outcomes is not fully understood but may be due to interactions with different receptors on the cell membrane. PTK7/Otk is a transmembrane receptor that is implicated in various developmental and physiological processes including cell polarity, cell migration, and invasion. Here, we examine two roles of Otk-1 and Otk-2 in patterning and neurogenesis. We find that Otk-1 is a positive regulator of signaling and Otk-2 functions as its inhibitor. We propose that PTK7/Otk functions in signaling, cell migration, and polarity contributing to the diversity of cellular responses seen in Wnt-mediated processes.


Asunto(s)
Tipificación del Cuerpo , Neurogénesis , Proteínas Tirosina Quinasas Receptoras , Vía de Señalización Wnt , Animales , Diferenciación Celular , Membrana Celular/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Vía de Señalización Wnt/fisiología
13.
Sci Rep ; 14(1): 7013, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528093

RESUMEN

The uniformity of remolded loess is crucial for engineering stability and in laboratory testing, as it affects physical and mechanical properties. It is important to have an index which can accurately and conveniently evaluate the uniformity of remolded loess. This study demonstrated and verified the feasibility of using hydraulic conductivity (K) as an indicator for evaluating the uniformity of remolded loess through laboratory experiments and theoretical analysis. In laboratory research, nine loess samples under different preparation conditions were meticulously prepared in duplicate, which were divided into three sets according to the whole dry density (WDD) of approximately 1.3 g/cm3, 1.4 g/cm3, and 1.5 g/cm3 respectively. For the nine duplicate samples, two procedures were performed for each of the sample. One is the uniformity analysis by cutting the soil column and weighing. The other is the hydraulic conductivity experiment. Results showed that sample uniformity is affected by sample preparation conditions, and there are differences in the uniformity of the same WDD samples. The values of K positively correlate with the degree of sample uniformity. In theoretical analysis, based on Darcy's Law and Kozeny-Carman equation, it is found K is inversely proportional to the variance ( σ 2 ) of the sample dry density. That is, K is positively proportional to the sample uniformity. Since K can be easily determined in the laboratory, the application of this new index in the field of geotechnical engineering makes it very convenient and simple to evaluate the uniformity of remolded loess.

14.
World J Gastrointest Oncol ; 16(2): 300-313, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38425402

RESUMEN

MicroRNAs (miRNAs) have received much attention in the past decade as potential key epigenomic regulators of tumors and cancer stem cells (CSCs). The abnormal expression of miRNAs is responsible for different phenotypes of gastric cancer stem cells (GCSCs). Some specific miRNAs could be used as promising biomarkers and therapeutic targets for the identification of GCSCs. This review summarizes the coding process and biological functions of miRNAs and demonstrates their role and efficacy in gastric cancer (GC) metastasis, drug resistance, and apoptosis, especially in the regulatory mechanism of GCSCs. It shows that the overexpression of onco-miRNAs and silencing of tumor-suppressor miRNAs can play a role in promoting or inhibiting tumor metastasis, apart from the initial formation of GC. It also discusses the epigenetic regulation and potential clinical applications of miRNAs as well as the role of CSCs in the pathogenesis of GC. We believe that this review may help in designing novel therapeutic approaches for GC.

15.
Acta Pharmacol Sin ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538717

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease, and its prevalence is increasing. Currently, no effective therapies for PD exist. Marine-derived natural compounds are considered important resources for the discovery of new drugs due to their distinctive structures and diverse activities. In this study, tetrahydroauroglaucin (TAG), a polyketide isolated from a marine sponge, was found to have notable neuroprotective effects on MPTP/MPP+-induced neurotoxicity. RNA sequencing analysis and metabolomics revealed that TAG significantly improved lipid metabolism disorder in PD models. Further investigation indicated that TAG markedly decreased the accumulation of lipid droplets (LDs), downregulated the expression of RUBCN, and promoted autophagic flux. Moreover, conditional knockdown of Rubcn notably attenuated PD-like symptoms and the accumulation of LDs, accompanied by blockade of the neuroprotective effect of TAG. Collectively, our results first indicated that TAG, a promising PD therapeutic candidate, could suppress the accumulation of LDs through the RUBCN-autophagy pathway, which highlighted a novel and effective strategy for PD treatment.

16.
Front Pharmacol ; 15: 1309876, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476330

RESUMEN

Preclinical efficacy evaluation and tumor drug sensitivity analysis are two main applications of efficacy evaluation. Preclinical efficacy evaluation is to predict whether candidate drugs or therapies may improve patient outcomes in clinical trials. Tumor drug sensitivity analysis is an approach for the personalized evaluation and optimization of approved anti-cancer drugs and treatment regimens. Overall survival (OS) is the gold standard to evaluate the outcome of drugs or therapies in both clinical trials and clinical treatment. Many efficacy evaluation models, such as cell model, tumor cell-line transplant model, patient-derived tumor xenograft model, tumor organoid model, have been developed to assess the inhibitory effect of tested drugs or therapies on tumor growth. In fact, many treatments may also lead to malignant progression of tumors, such as chemotherapy, which can lead to metastasis. Therefore, tumor growth inhibition does not necessarily predict OS benefit. Whether it can prevent or inhibit tumor recurrence and metastasis is the key to whether drugs and therapies can improve patient outcomes. In this perspective, we summarize the current understanding of the pathological progression of tumor recurrence and metastasis, point out the shortcomings of existing tumor transplant models for simulating the clinical scenario of malignant progression of tumors, and propose five improved indicators for comprehensive efficacy evaluation to predict OS benefit using tumor orthotopic transplant and resection model. Improvement in the accuracy of efficacy evaluation will accelerate the development process of anti-cancer drugs or therapies, optimize treatment regimens to improve OS benefit, and reduce drug development and cancer treatment costs.

17.
Int J Surg ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38445521

RESUMEN

BACKGROUND: Early assessment and management of cerebral edema and hematoma following aneurysmal subarachnoid hemorrhage (a-SAH) can significantly impact clinical cognitive outcomes. However, current clinical practices lack predictive models to identify early structural brain abnormalities affecting cognition. To address this gap, we propose the development of a predictive model termed the a-SAH Early Brain Edema/Hematoma Compression Neural (Structural Brain) Networks Score System (SEBE-HCNNSS). METHODS: In this study, 202 consecutive patients with spontaneous a-SAH underwent initial computed tomography (CT) or magnetic resonance imaging (MRI) scans within 24 hours of ictus with follow-up 2 months after discharge. Using logistic regression analysis (univariate and multivariate), we evaluated the association of clinically relevant factors and various traditional scale ratings with cognitive impairment (CI). Risk factors with the highest area under the curve (AUC) values were included in the multivariate analysis and least absolute shrinkage and selection operator (LASSO) analysis or Cox regression analysis. RESULTS: A total of 177 patients were enrolled in the study, and 43 patients were classified with a high SEBE-HCNNSS grade (3 to 5). After a mean follow-up of 2 months, 121 individuals (68.36%) with a-SAH and 3 control subjects developed incident CI. The CT inter-observer reliability of the SEBE-HCNNSS scale was high, with a Kappa value of 1. Furthermore, ROC analysis identified the SEBE-HCNNSS scale (OR 3.322, 95% CI 2.312-7.237, P=0.00025) as an independent predictor of edema, CI, and unfavorable prognosis. These results were also replicated in a validation cohort. CONCLUSION: Overall, the SEBE-HCNNSS scale represents a simple assessment tool with promising predictive value for CI and clinical outcomes post-a-SAH. Our findings indicate its practical utility as a prognostic instrument for risk evaluation after a-SAH, potentially facilitating early intervention and treatment.

18.
Hypertens Res ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438728

RESUMEN

Hypertension and atrial fibrillation are closely related. However, hypertension is already prevalent in young adults, but atrial fibrillation usually occurs in the elderly. In the present analysis, we investigated incident atrial fibrillation in relation to new-onset hypertension in an elderly Chinese population. Our study participants were elderly (≥65 years) hypertensive residents, recruited from community health centers in the urban Shanghai (n = 4161). Previous and new-onset hypertension were defined as the use of antihypertensive medication or elevated systolic/diastolic blood pressure (≥140/90 mmHg), respectively, at entry and during follow-up on ≥ 2 consecutive clinic visits. Atrial fibrillation was detected by a 30-s single-lead electrocardiography (ECG, AliveCor® Heart Monitor) and further evaluated with a regular 12-lead ECG. During a median of 2.1 years follow-up, the incidence rate of atrial fibrillation was 7.60 per 1000 person-years in all study participants; it was significantly higher in patients with new-onset hypertension (n = 368) than those with previous hypertension (n = 3793, 15.76 vs. 6.77 per 1000 person-years, P = 0.02). After adjustment for confounding factors, the hazard ratio for the incidence of atrial fibrillation was 2.21 (95% confidence interval 1.15-4.23, P = 0.02) in patients with new-onset hypertension versus those with previous hypertension. The association was even stronger in those aged ≥ 75 years (hazard ratio 2.70, 95% confidence interval 1.11-6.56, P = 0.03). In patients with previous hypertension, curvilinear association (P for non-linear trend = 0.04) was observed between duration of hypertension and the risk of incident atrial fibrillation, with a higher risk in short- and long-term than mid-term duration of hypertension. Our study showed a significant association between new-onset hypertension and the incidence of atrial fibrillation in elderly Chinese. In an elderly Chinese population with previous and new-onset hypertension, we found that the new-onset hypertension during follow-up, compared with previous hypertension, was associated with a significantly higher risk of incident atrial fibrillation. In patients with previous hypertension, curvilinear association was observed between duration of hypertension and the risk of incident atrial fibrillation, with a higher risk in short- and long-term than mid-term duration of hypertension.

19.
Hypertens Res ; 47(5): 1391-1400, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38485775

RESUMEN

We investigated blood pressure (BP) variability as assessed by beat-to-beat, reading-to-reading and day-to-day BP variability indices in patients with obstructive sleep apnea-hypopnea syndrome (OSAHS). In 786 hospitalized hypertensives (mean age, 53.2 years; 42.2% women), we performed 10-min beat-to-beat (n = 705), 24-h ambulatory (n = 779), and 7-day home BP (n = 445) measurements and the full overnight polysomnography. Mild, moderate and severe OSAHS were defined as an apnea-hypopnea index of 5-14, 15-29, and ≥ 30 events per hour, respectively. BP variability indices including variability independent of the mean (VIM), average real variability (ARV), and maximum-minimum difference (MMD), were compared across the OSAHS severity groups. In univariate analysis, beat-to-beat systolic VIM and MMD, reading-to-reading asleep systolic and diastolic ARV and MMD increased from patients without OSAHS, to patients with mild, moderate and severe OSAHS. This increasing trend for beat-to-beat systolic VIM and MMD remained statistically significant after adjustment for confounders (P ≤ 0.047). There was significant (P ≤ 0.039) interaction of the presence and severity of OSAHS with age and body mass index in relation to the beat-to-beat systolic VIM and MMD and with the presence of diabetes mellitus in relation to asleep systolic ARV. The association was stronger in younger (age < 50 years) and obese (body mass index ≥ 28 kg/m²) and diabetic patients. None of the day-to-day BP variability indices reached statistical significance (P ≥ 0.16). BP variability, in terms of beat-to-beat systolic VIM and MMD and asleep reading-to-reading asleep systolic ARV, were higher with the more severe OSAHS, especially in younger and obese and diabetic patients.


Asunto(s)
Presión Sanguínea , Polisomnografía , Apnea Obstructiva del Sueño , Humanos , Persona de Mediana Edad , Masculino , Femenino , Presión Sanguínea/fisiología , Apnea Obstructiva del Sueño/fisiopatología , Apnea Obstructiva del Sueño/complicaciones , Adulto , Anciano , Hipertensión/fisiopatología , Monitoreo Ambulatorio de la Presión Arterial
20.
Discov Oncol ; 15(1): 31, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324023

RESUMEN

Cancer has become one of the most important causes of human death. In particular, the 5 year survival rate of patients with digestive tract cancer is low. Although chemotherapy drugs have a certain efficacy, they are highly toxic and prone to chemotherapy resistance. With the advancement of antitumor research, many natural drugs have gradually entered basic clinical research. They have low toxicity, few adverse reactions, and play an important synergistic role in the combined targeted therapy of radiotherapy and chemotherapy. A large number of studies have shown that the active components of Paris polyphylla (PPA), a common natural medicinal plant, can play an antitumor role in a variety of digestive tract cancers. In this paper, the main components of PPA such as polyphyllin, C21 steroids, sterols, and flavonoids, amongst others, are introduced, and the mechanisms of action and research progress of PPA and its active components in the treatment of various digestive tract cancers are reviewed and summarized. The main components of PPA have been thoroughly explored to provide more detailed references and innovative ideas for the further development and utilization of similar natural antitumor drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...